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Abstract. We address the problem of the optimization of high-order harmonic generation by two laser
fields of frequencies ω0 and 2ω0 respectively, through a theoretical approach. The parameters that are
investigated are the two lasers intensities as well as the relative phase between the two fields. We show
that a moderate, but significant increase of efficiency can be achieved in that context and give the domain
of optimized parameters. Moreover, we quantitatively investigate the gain and set the limitation of the
optimization using such coherent control methods.

PACS. 42.65.Ky Harmonic generation, frequency conversion – 42.79.Nv Optical frequency converters –
32.80.Wr Other multiphoton processes

1 Introduction

For a few years now, high-order harmonic generation
(HOHG) has invariably been one of the major topics of
super intense laser-atom physics. High order harmonics
are generated when a short, intense laser pulse interacts
with matter. HOHG has been mainly studied in atomic
gases, ions, molecules, atom clusters and solids, and has
already been reviewed in several articles [1–4]. Without
any doubt, HOHG nowadays stands as one of the most
promising methods of producing short-pulse coherent ra-
diations in the XUV range.

In fact, high harmonics have found numerous applica-
tions in various areas of physics. More particularly, there
have been several applications in atomic physics [5,6]. Be-
sides, harmonics have already been used for solid state
spectroscopy [7], and plasma diagnostics [8]. Applications
that are directly related to the coherence properties of
harmonics are discussed in reference [4].

As far as the applications of HOHG are concerned,
the major problem consists in optimizing various harmon-
ics parameters. Thanks to the improvement of experimen-
tal techniques and of theoretical understanding, numerous
kinds of optimization of HOHG have been studied. Par-
ticularly important are the optimization studies of har-
monic efficiency as a function of laser parameters, such as
laser polarization, pulse duration, or wavelength [9–12].
Another promising way to improve generation efficiency
employs generation by multicolored laser fields, which was
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intensively analyzed both theoretically [13–16], and exper-
imentally [13,17–20].

The evidence of a significant effect of the 2-color mix-
ing on harmonic generation is clear and has been reported
in the above cited works. However, nowadays experiments
making use of high harmonics (e.g. non-linear atomic
physics with XUV radiation) require an ever increasing
conversion efficiency. Despite the fact that the 2-color non-
linear effect might be huge, the question whether such a
2-color technique is able to provide a better conversion
efficiency than the classical single laser method has to be
discussed and investigated. Thus, the aim of this work is to
compare the best harmonic generation rate obtained with
a single laser to the best harmonic rate generated with the
2-color scheme, and to conclude whether this technique is
worth implementing experimentally.

This quantitative study is carried out within the sin-
gle active electron approximation by solving the 3D time-
dependent Schrödinger equation for an isolated atom in a
strong laser field. The interaction with the atom is fully
represented without approximations and includes satura-
tion due to ionization. Effects due to the propagation in
the medium have been excluded in this initial work. There-
fore, the results presented in this paper have to be consid-
ered as upper limits since propagation of the harmonics
in the gaseous medium will act as a moderator for the
optimized conversion efficiency.

The paper is organized as follows. In Section 2,
we present our method of solving the time-dependent
Schrödinger equation. In Section 3, we discuss how to-
tal ionization is affected by a change of the different



228 The European Physical Journal D

parameters. Sections 4 and 5 contain the main results of
our paper, i.e. comparative studies of harmonic generation
efficiency in single, and two-color laser fields.

2 Numerical simulation

The approach described in this section concerns harmonics
generated by an isolated atom subject to the laser pulse.
In other words, we limit our study to the Single Atom
Response (SAR), and exclude effects due to the propaga-
tion of the scattered light in the gaseous medium. Thus
our approach involves the solution of the Time-Dependent
Schrödinger Equation (TDSE) associated with the atomic
system illuminated by a mono- or a bi-chromatic laser
pulse. The atomic system we consider is hydrogen and the
field is described semi-classically. For the present work, the
polarization is set linear. The numerical method we use to
solve the TDSE is one of the most precise ones, and has
been described elsewhere [21] in the context of the stud-
ies of Above-Threshold-Ionization spectra. It is based on
the decomposition of the total wave-function onto a basis
of spherical harmonics and B-spline radial wave-functions.
This technique has also proved to be very well suited for
the calculation of HOHG. As in similar approaches [22–
24], the information relative to the high order harmon-
ics is directly obtained from the Fourier-transform of the
time-dependent electric dipole, or from its acceleration if
ionization is important.

Numerical simulation of HOHG is very well docu-
mented (for a recent review see [4]). However, several
points still need to be clarified, or emphasized in the
present context. First of all, the interaction is described
in the velocity gauge. This choice is almost a necessity
when one uses the wave-function expansion in terms of
spherical harmonics, together with intense laser fields [25].
Therefore, the electromagnetic field is defined through the
vector potential as:

A(t) =
E0
ω0
f(t)(cos(ω0t) +

r

2
cos(2ω0t+ φ)), (1)

E(t) = − ∂

∂t
A(t), (2)

where ω0 is the fundamental laser frequency, E0 is the
field maximum amplitude with a corresponding intensity
I0 = E2

0 , r2 is the intensity ratio between the two field
components such that the total intensity is given by I =
I0(1+r2). Finally φ is the relative phase. The choice of the
pulse shape f(t), which is supposed to mimic the temporal
evolution of the laser envelope, is an important issue. A
good approximation is obtained with envelope functions
of the form: f(t) = exp(−(t/τ)2/2) with t ∈ [−∞,∞] or
f(t) = cos(πt/τ ′)2 with t ∈ [−τ ′/2, τ ′/2]. Computing the
harmonic spectrum with such pulse shapes where the full
width at half maximum does not exceed 100 fs results,
however, in an irregular spectrum in which the harmonics
located in the plateau region cannot be resolved [26,27].
Note, nevertheless, that such a spectrum clearly exhibits
harmonics if propagated through the medium [28]. This

phenomenon is due to the fact that only harmonic fre-
quencies are phase matched in the medium and therefore
propagate with a minimum loss. A way to circumvent this
problem inherent to the single atom calculations is either
to use pulses longer than 100 fs inducing an extra com-
putation costs, or to consider a modified shape such as
a “flat pulse” which maintains the field envelop constant
over several cycles [29]. We have opted for such pulses
which include a cosine squared turn-on and -off. We were
able to check that such a “flat pulse” with a FWHM of
50 fs could resolve the plateau harmonics; in contrast, to
achieve the same resolution, it was necessary to extend
the pure cosine squared pulse up to a FWHM of 200 fs.

Ionization is a relevant physical quantity in the con-
text of HOHG since it acts as an inhibitor: when the atom
is totally ionized, the dipole does not radiate anymore.
Our numerical approach allows to compute ionization in
two different ways which are equivalent in principle, but
may be different in practice. The first technique available
is to compute, by projection onto the bare atom eigen-
states, the populations left in the bound states, as well
as in the continuum states at the end of the pulse. Ion-
ization degree is then defined as the complement to the
population left in the bound states. The second technique
involves an absorbing wall set at the boundaries of the fi-
nite box in which the system is described, i.e. a sphere in
the present case. Every wave-packet released in the contin-
uum by the field, moves away and is absorbed by the wall
when it reaches the space boundaries. Since the absorber
is modeled by a complex potential, the norm of the total
wave-function decreases as the outgoing density probabil-
ity flux hits the wall. In that case, ionization is defined as
the missing part of the norm of the wave-function. The
great advantage of the latter method is that relatively
small “boxes” are required to represent the interaction,
and therefore the computation time remains reasonable.
On the other hand, such an approach leads to a computed
ionization degree that depends, for a given pulse dura-
tion, on the box size. The population that has reached
the boundaries during the pulse would never have done
so if the box was 10 times bigger (it requires much more
time to travel to the far boundaries). However, if one keeps
propagating the system after the pulse has gone until all
the population in the continuum has flown away (absorbed
by the wall) for any box size, then the ionization degree
computed in this way is independent of the box size, and
equals that computed by the projection technique. The
projection method has been implemented in this work.

3 Total ionization

Harmonic generation is a highly non-linear process, and as
such is very sensitive to the field intensity. Increasing the
field strength has mainly two effects. First, it moves the
position of the cut-off towards lower wavelengths, thus ex-
tending the plateau. Second, the harmonic strength itself
increases. However these processes are subject to satura-
tion when the atom has completely ionized. Above the
saturation intensity, any further increase of the intensity
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Fig. 1. Ionization of H as a function of the two-color field
intensity (h̄ω0 = 1.33 eV, FWHM = 50 fs, φ = 0). Open circles:
ω0 alone, open squares: ω0 and 2ω0 I0 = 5 × 1013 W/cm2

and r varies from 30 to 160%, filled diamonds: ω0 and 2ω0

I0 = 9 × 1013 W/cm2 and r varies from 10 to 80%, dashed
line: ADK calculation.

results in a less efficient harmonic generation. Ionization is
therefore a key point as a limiting mechanism in HOHG.
Moreover, the highest conversion efficiency is observed
close to the saturation intensity. It is then crucial to study
how the combination of the two fields acts on total ion-
ization. We present in this section the variations of the
ionization probability with respect to several parameters
of the fields (I0, r).

A complete study would consist in computing har-
monic generation due to the bichromatic field for all pos-
sible values of the intensity of each frequency, that is scan-
ning over the two parameters I0 and r. Such a task may
result in a quite heavy computation. We have therefore
restricted ourselves to considering only two cases i.e. a
study as a function of the relative intensity r2 for two
representative intensities of the fundamental frequency
(h̄ω0 = 1.33 eV), namely I0 = 5× 1013 W/cm2 (low ion-
ization when r = 0), and I0 = 9× 1013 W/cm2 (close to
saturation already when r = 0). Figure 1 shows the total
ionization probability due to the fundamental frequency
alone, and to the mixed two color field. One immediately
sees that the presence of the 2ω0 field greatly enhances ion-
ization, and that saturation is reached with much lower
intensities. The explanation is straightforward. It takes
11 photons to ionize the atom with the single fundamen-
tal field. Therefore, within the lowest order perturbation
theory, the probability varies like I11

0 . On the other hand
it takes only 6 photons to ionize with the 2ω0 field. The
order of the process is thus almost twice as less, and there-
fore more efficient at comparable intensity. For compari-
son, we also show in Figure 1 the ionization degree due
to the fundamental field calculated using the ADK model
[30]. As expected, the agreement between exact numerical
and ADK results becomes worse as the intensity decreases
entering the multiphotonic regime (the Keldish parameter
being γ = 1.45 at I0 = 4× 1013 W/cm2).
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Fig. 2. Harmonic spectra of H as a function of the single field
intensity (h̄ω0 = 1.33 eV, FWHM = 50 fs).

The addition of the 2ω0 component might help improv-
ing HOHG, but certainly enhances ionization lowering the
saturation intensity.

4 Harmonic generation due to the single
frequency field

Before going any further in investigating the response of
the atom to the superposition of the two components ω0

and 2ω0 of the bichromatic field, we present typical har-
monic spectra due to either the ω0 or 2ω0 component
alone. We will also determine the optimum parameters
producing the maximum number of harmonic photons.

First of all, let us recall the general behavior of the
harmonic spectrum as the intensity is varied. One easily
sees in Figure 2 that increasing the intensity results in
a better harmonic generation efficiency, regardless of the
order. However, it should be noticed that above a certain
intensity, this efficiency decreases due to the depletion of
the atom (see Sect. 3). To summarize, the harmonic pho-
ton number varies as follows: it increases very rapidly un-
til it reaches the plateau region, then changes levels off
with wide oscillations over a certain intensity range, and
plummets when the saturation intensity is exceeded. This
behavior is illustrated in our case for three selected har-
monics, namely H11, H21 and H33, in Figure 3. The op-
timal regime is determined by selecting the very intensity
for which a given harmonic shows the maximum strength.

This behavior is obviously similar to the case where
the fundamental field has the 2ω0 frequency. The only
difference being that an extended plateau does not have a
chance to build up before the atom has ionized, the ioniza-
tion process is much more efficient in that case. However,
if this frequency does not allow for high order harmon-
ics, the strengths of the low order harmonics produced
(from H3 to H11 of the 2ω0 field) are much larger than
those obtained with the ω0 field [18], as it can be seen
in Figure 4. Harmonics of the 2ω0 field are displayed in
Figure 4 as a function of the fundamental field harmonic
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Fig. 3. Variation of the polarizability of H11, H21, H33 as a
function of the laser intensity (h̄ω0 = 1.33 eV, FWHM = 50 fs).
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Fig. 4. Optimal spectra obtained with ω0 alone and 2ω0 alone
(h̄ω0 = 1.33 eV, FWHM = 50 fs).

order, and therefore appear at even values of the abscissa.
This higher conversion efficiency is explained in terms of
wave-packet diffusion [31]. HOHG is based on the recol-
lision and recombination of an oscillating freed electron
with its parent ion. In the presence of the 2ω0 field, the
time a driven continuum wave-packet needs to come back
to the nucleus is half as long as that in the presence of
the ω0 field. Therefore, the spreading of the wave-packet
is less important, and results in a larger recombination
cross-section.

Figure 4 shows the best achievable spectra (in terms
of the photon number) due to either of the two fields. The
message to be read from this graph is the following: as
long as one is interested in photons with energy less than
21ω0 it is preferable to generate the radiation from the
2ω0 field alone for a better efficiency. Note however that
the number of harmonic frequencies available is much less
in that case due to the energy spacing of 4ω0 between
consecutive harmonics. On the other hand, larger photon
energy is only available via the interaction with the ω0

field alone. An attempt to enhance HOHG by mixing the
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Fig. 5. Comparison of the spectrum of odd harmonics pro-
duced by the bichromatic field and those obtained using each
field component individually (h̄ω0 = 1.33 eV, FWHM = 50 fs,
φ = 0).

two frequencies has to provide spectra that are better (i.e.
have higher efficiency) than the maximum of the joined
spectra of Figure 4.

5 Harmonic generation in the bichromatic
field

The aim of this section is first to show that the effect of the
mixing on harmonic enhancement can be very large but
not necessarily large enough to provide significant gain in
the harmonic production compared to what can be ob-
tained using a monochromatic field.

As it has been already reported in both experimen-
tal as well as theoretical works [17–19,32], the addition to
the fundamental field of only few percents of its second, or
third harmonic may greatly enhance harmonic generation
up to a factor of 10 in the most favorable cases. We also
have observed such an effect as it is illustrated in Figure 5,
where we compare the spectrum obtained with the ω0 field
alone and the one given by the bichromatic field where
the intensity of the 2ω0 component is 50% of the funda-
mental intensity. The plateau due to the bichromatic field
clearly lies between 1 and 2 orders of magnitude above
the plateau due to ω0 component alone. Moreover, the
plateau has been extended and the position of the cut-off
is now located around H31 (instead of H25 in the single
component case). This latter point can be explained by
reconsidering the classical rescattering picture leading to
the so-called cut-off law [33,34], in the case of the bichro-
matic field. The kinetic energy at the time, when the elec-
tron backscatters with its parent ion, may be larger than
the conventional 3.17Up depending on the relative phase
between the two field components [35]. This supports the
conclusions of a recent analogous work [36] performed in
1D that shows that that there is no analog of a simple
cutoff law for bichromatic fields.
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Fig. 6. Polarizability of odd harmonics H11, H21 and H33
for various values of the intensity ratio r. ω0-field intensity is
5× 1013 W/cm2. Horizontal dashed lines refer to the averaged
maximal corresponding polarizabilities obtained using the ω0

field alone (h̄ω0 = 1.33 eV, FWHM = 50 fs, φ = 0).

Although the effect of the mixing of the two fields
(ω0 and 2ω0) on conversion efficiency is clear and can be
large depending on the intensities considered, its existence
does not necessarily imply that, given an atomic system,
a larger number of harmonic photons can be collected us-
ing a mixed field compared to what is commonly achieved
with a single monochromatic field. To clarify this point we
have performed a quantitative and systematic study of the
harmonic production efficiency due to the mixed field for
a large set of parameters (intensities of both field compo-
nents). We then have compared the best results (in terms
of photon number) to the harmonic production achievable
with the monochromatic field.

For simplicity’s sake, we have chosen to illustrate
the investigation on a selected set of harmonics, namely
H11 (beginning of the plateau), H21 (middle part of the
plateau) and H33 (close to the cut-off). We have computed
the single atom response at those frequencies as a function
of the intensity of each of the two field components. The
polarizabilities are plotted in Figure 6 (low fundamental
field intensity), Figure 7 (moderate intensity) and Figure 8
(close to the saturation intensity). We have extracted from
the curves plotted in Figure 3 the maximum polarizability
for each of the 3 harmonics (all the curves have first been
smoothed with respect to the wide fluctuations, which in
a sense mimics the macroscopic propagation effects [4]).
The values thus obtained (0.4 for H11, 0.01 for H21 and
8×10−4 for H33) are reported as horizontal dashed lines in
Figures 6 to 8. A gain in a given harmonic production due
to the mixing of the 2 frequencies is observed as soon as
the curve lies above the corresponding threshold (dashed
line). A rapid overview of the 3 graphs shows some gain,
at least for harmonics H11 and H21, over a significant
range of the intensity ratio. This gain can be as big as an
order of magnitude (for H11 for example). The behavior
of the curves, however, is different for the three intensities
considered. As one can see in Figure 8 (high ω0-field inten-
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Fig. 7. Same as Figure 6. ω0-field intensity is 6.6×1013 W/cm2.
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Fig. 8. Same as Figure 6. ω0-field intensity is 9×1013 W/cm2.

sity), the addition of the 2ω0-field does not enhance sig-
nificantly the harmonic generation. The curves related to
H11 and H21 barely fluctuate around the value obtained
in the absence of the 2ω0 field (namely at r = 0 in the
Figure). Only H33 exhibits an increase around r = 70%
but does not reach the maximum strength observed in the
monochromatic case. The situation is, however, different
in Figure 7 (moderate ω0 field intensity) where the curves
clearly increase as r increases. Starting around r = 60%,
the curves lie above their corresponding threshold (except
H33). In fact, although not displayed in the figure, H5 up
to H23 are significantly enhanced with respect to the best
case obtained with the monochromatic field. What should
be remembered here is that the mixing of ω0 and 2ω0

(Iω0 = 6.6×1013 W/cm2, r = 70%) results in the produc-
tion of a larger number of photons in the harmonic modes
H5 up to H23 than the number that can be achieved in
the most favorable case (Iω0 = 1014 W/cm2) using the
monochromatic field alone. Finally, Figure 6 (low funda-
mental field intensity) also shows a gain for harmonics
lower than H23. The gain looks less spectacular than in
the previous case, but has the advantage of being quasi
constant (small fluctuations) over a large set of the 2ω0
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Fig. 9. Ionization as a function of the relative phase. h̄ω0 =
1.33 eV, FWHM = 50 fs, I0 = 6.6×1013 W/cm2 and r = 70%.

field intensity. In this case, the optimal intensity ratio is
somewhere around r = 100%.

So far, we have only considered the two field com-
ponent intensities as tunable parameters. However, the
relative phase between the two fields affects significantly
the ionization degree [19,37], and the harmonic strength
[15,17,32]. We now propose to determine up to what de-
gree the relative phase affects HOHG in the case where
Iω0 = 6.6×1013 W/cm2 and r = 70% since it corresponds
to a quite favorable set of parameters as we have shown
above. Figure 9 shows the total ionization as a function of
the fields phase difference φ. As can be shown, ionization
is periodic with a periodicity of 2π/n where n is the ra-
tio of the frequency of the two fields (n = 2 in our case).
Changing φ alters the maximum amplitude of the electric
field, although the averaged intensity remains the same
(see, e.g. Fig. 1 of [37]). Because ionization (multiphoton
ionization in our case) is a non-linear process, the phase
configuration for which the field is the less symmetric with
highest maximum amplitude (φ = π/2) leads to a more
efficient ionization mechanism as can be seen in Figure 9.
Note that in the case r = 70%, the contrast is 0.036, while
it is 0.34 for r = 30%. This latter point is in agreement
with the general feature according to which the effect of
the second harmonic field is less and less significant as the
system reaches the saturation regime.

We also have looked at the modulation of the har-
monic strength as a function of the phase difference. The
results are presented in Figure 10 for a selected set of
harmonics. The modulation can be as big as 3 orders of
magnitude for a cut-off harmonic, that is, H33 can com-
pletely disappear if the phase difference is chosen to be
π/2 for instance. Low order harmonics (up to H5) as well
as cut-off harmonics have a similar and well defined be-
havior, namely they are maximum for φ = 0 (modπ) and
minimum for φ = π/2 (modπ). Note that the generation
of these harmonics is maximal when ionization is mini-
mal, and vice versa. However, the plateau harmonics have
a more complex phase dependence. It may happen that
a particular harmonic has a maximum strength at non-
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Fig. 10. Harmonic strength as a function of the relative phase.
h̄ω0 = 1.33 eV, FWHM = 50 fs, I0 = 6.6 × 1013 W/cm2 and
r = 70%.
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circles: phase optimized spectrum for I0 = 6.6 × 1013 W/cm2

and r = 70% (h̄ω0 = 1.33 eV, FWHM = 50 fs), dashed line:
phase averaged spectrum.

singular values of the phase as it is the case for H21 for
example. This is the reason why one should also tune the
phase difference in order to optimize the number of pho-
tons in each harmonic mode. Note, however, that each
mode may have an optimum parameter set (I0, r, φ), not
necessarily identical for all modes. This latter point has
been recently studied in another work [20].

Finally, Figure 11 shows the best harmonic spectrum
obtained so far, that is, optimized over the field intensities
but also over the relative phase.

One can see that the optimized curve (filled circles) lies
above the optimal single color spectrum up to harmonic 23
by about one order of magnitude. After that limit, more
or less located in the middle of the plateau, the enhance-
ment is not as spectacular but still significant. The signal
dies out definitively around H35. Note however, that up
to H17 the optimized spectrum lies below the spectrum
obtained using the 2ω0-field alone. The phase-optimized
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spectrum has been constructed by collecting the polariz-
abilities corresponding to the best phase configuration for
each individual harmonic. As mentioned earlier, the op-
timal phase tuning is typically different for different har-
monic orders. Also shown, is the spectrum obtained by
averaging over the relative phase to evaluate the effect of
a non-uniform relative phase distribution over the inter-
action volume. This case thus sets a lower limit for the
investigated phenomena. A reasonable prediction should
lie in between these two curves (dashed and filled circles
of Fig. 11).

6 Conclusion

We have theoretically investigated harmonic generation
using two-color pulsed fields. We have shown that an en-
hancement of harmonic efficiency can be achieved using
frequency mixing, compared to what is obtained using
a single field. Enhancement requires, however, that all
of the parameters be optimized for a maximal harmonic
strength production. This study gives ranges of parame-
ters, for which frequency mixing can be useful (at least for
harmonics expanding up to the middle of the correspond-
ing optimized single field harmonic spectrum), and points
out that the relative phase between two color field needs
also to be optimized. The maximum gain so far achieved
sets an upper limit to the maximum enhancement observ-
able in the single active electron approximation. This limit
will obviously be lowered by the phase-mismatch condi-
tions appearing during the propagation in the medium.
The quantitative evaluation of the effect of absorption and
phase-matching on conversion efficiency in such a scheme
is numerically involved although within reach on nowa-
days’ super computers and will be considered in view of
the preliminary results of a 2-color experiment that will
be held in CELIA (Bordeaux, France).

This work has been supported by the “Laboratoire de
Recherche Correspondant” Université Bordeaux I - CEA 1997.
Part of the calculations have been performed at the CNUSC
(Montpellier, France).
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